LECTURE 4
HISTORY OF COMPUTING - SOFTWARE

As I indicated in the last Lecture, in the early days of
computing the control part was all done by hand. The slow desk
computers were at first controlled by hand, for example multi-
plication was done by repeated additions, with column shifting
after each digit of the multiplier. Division was similarly done
by repeated subtractions. In time electric motors were applied
both for power and later for more automatic control over multi-
plication and division. The punch card machines were controlled
by plug board wiring to tell the machine where to find the infor-
mation, what to do with it, and where to put the answers on the
cards (or on the printed sheet of a tabulator), but some of the
control might also come from the cards themselves, typically X
and Y punches, (other digits could, at times, control what
happened). A plug board was usually specially wired for each job
to be done, and in an accounting office the wired boards were
usually saved and used again each week, or month, as they were
needed in the cycle of accounting.

When we came to the relay machines, after Stibitz’s first
Complex Number Computer, they were mainly controlled by punched
paper tapes. Paper tapes are a curse when doing one-shot
problems - they are messy, and gluing them to make corrections,
as well as loops, is a trouble, (because, among other things, the
glue tends to get into the reading fingers of the machine!).
With very little internal storage in the early days the programs
could not be economically stored in the machines, (though I am
inclined to believe that the designers considered it).

The ENIAC was at first (1945-6) controlled by wiring as if
it were a gigantic plugboard, but in time Nick Metropolis and
Dick Clippenger converted it to a machine that was programmed
from the ballistic tables, which were huge racks of dials into
which decimal digits of the program could be set via the knobs of
the decimal switches.

Internal programming became a reality when storage was
reasonably available, and, while it is commonly attributed to von
Neumann he was a consultant to Mauchly and Eckert and their team.
According to Harry Huskey internal programming was frequently
discussed by them before von Neumann began the consulting. The
first, at all widely available discussion (after Lady Lovelace
wrote and published '‘a few programs for the proposed Babbage
analytical engine), was the von Neumann Army reports that were
widely circulated, but never published in any refereed place.

The early codes were one address mainly, meaning each in-

1

struction contained an instruction part and the address where
the number was to be found or sent to. We also had two address
codes, typically for rotating drum machines, so that the next in-
struction would be immediately available once the previous one
was completed - the same applied to mercury delay lines, and
other storage devices that were serially available. Such coding
was called minimum latency coding, and you can imagine the
trouble the programmer had in computing where to put the next in-
struction and numbers (to avoid delays and conflicts as best
possible), let alone in locating programming errors (bugs). In
time a program named SOAP (symbolic optimizing assembly program)
was available to do this optimizing using the IBM 650 machine it-
self. There were also three and four address codes, but I will
ignore them here.

An interesting story about SOAP is that a copy of the
program, call it program A, was both loaded into the machine as a
program, and processed as data. The output of this was program
B. Then B was loaded into the 650 and A was run as data to
produce a new B program. The difference between the two running
times indicated how much the optimization of the SOAP program (by
SOAP itself) produced. An early example of self-compiling as it
were.

In the beginning we programmed in absoclute binary, meaning
that we wrote the actual address where things were in binary, and
wrote the instruction part also in binary! There were two trends
to escape this, octal, where you simply group the binary digits
in sets of three, and hexadecimal where you take four digits at a
time, and had to use A,B,C,D,E,F for the representation of other
numbers beyond 9, (and you had, of course, learn the multiplica-
tion and addition tables to 15).

If, in fixing up an error, you wanted to insert some omitted
instructions then you took the immediately preceding instruction
and replaced it by a transfer to some empty space. There you put
in the instruction you just wrote over, added the instructions
you wanted to insert, and then followed by a transfer back to the
main program. Thus the program soon became a sequence of jumps
of the control to strange places. When, as almost always hap-
pens, there were errors in the corrections you then used the same
trick again, using some other available space. As a result the
control path of the program through storage soon took on the ap-
pearance of a can of spaghetti. Why not simply insert them in
the run of instructions? Because then you would have to go over
the entire program and change all the addresses that referred to
any of the moved instructions! Anything but that!

We very soon got the idea of reusable software, as it is now
called. 1Indeed Babbage had the idea. We wrote mathematical
libraries to reuse blocks of code. But an absolute address
library meant that each time the library routine was used it had
to occupy the same locations in storage. When the complete

library became too large we had to go to relocatable programs.
The necessary programming tricks were in the von Neumann reports,

which were never formally published.

2

A,

e

The first published book devoted to programming was by
Wilkes, Wheeler, and Gill and applied to the Cambridge, England
EDSAC, (1951), and I, among others, learned a lot from it, as you
will hear in a few minutes.

Someone got the idea that a short piece of program could be
written that would read in the symbolic names of the operations
(like ADD) and translate them at input time to the binary repre-
sentations used inside the machine (say 01100101). This was soon
followed by the idea of using symbolic addresses - a real heresy
for the old time programmers. You don’t now see much of the old
heroic absolute programming (unless you fool with a hand held
programmable computer and try to get it to do more than the
designer and builder ever intended).

I once spent a full year, with the help of a lady progran-
mer from Bell Telephone Laboratories, on one big problem coding
in absolute binary for the IBM 701 which used all the 32K
registers then available. After that experience I vowed that
never again would I ask anyone to do such labor. Having heard
about a symbolic system from Poughkeepsie, IBM, I ask her to send
for it and to use it on the next problem, which she did. As I
expected, she reported that it was much easier. So we told
everyocne about the new method, meaning about 100 people, who were
also eating at the IBM cafeteria near where the machine was.
About half were IBM pecple and half were, like us, outsiders
renting time. To my knowledge only one person - yes, only one -
of all the 100 showed any interest!

Finally, a more complete, and more useful, Symbolic Assembly
Program (SAP) was devised - after more years than you are apt to
believe during which most programmers continued their heroic ab-
solute binary programming. At the time SAP first appeared T
would guess that about 1% of the older programmers were inter-
ested in it - using SAP was '"sissy stuff", and a real programmer
would not stoop to wasting machine capacity to do the assembly.
Yes! Programmers wanted no part of it, though when pressed they
had to admit that their old methods used more machine time in
locating and fixing up errors than the SAP program ever used.
One of the main complaints was that by using a symbolic system
you would not know where anything was in storage - though in the
early days we supplied a mapping of symbolic to actual storage,
and believe it or not they later lovingly pored over such sheets
rather than realize that they did not need to know that informa-
tion if they stuck to operating within the system - no! When
correcting errors they preferred to do it in absolute binary
address.

FORTRAN, meaning formula translation, was proposed by Backus
and friends, and again was opposed by almost all programmers.
First, it was said that it couldn’t be done. Second, if it could
be done, it would be too wasteful of machine time and capacity.
Third, even if it did work, no respectable programmer would use
it - it was only for sissies!

The use of FORTRAN, like the earlier symbolic programming,
was very slow to be taken up by the professionals. And this is
typical of almost all professional groups. Doctors clearly do
not follow the advice they give to others, and they also have a
high proportion of drug addicts. Lawyers often do not leave
decent wills when they die. Almost all professionals are slow to
use their own expertise for their own work. The situation is
nicely summarized by the old saying, "The shoe maker’s children
go without shoes." Consider how in the future, when you are a
great expert, you will avoid this typical error!

With FORTRAN available and running, I told my programmer to
do the next problem in FORTRAN, get her errors out of it, let me
test it to see that it was doing the right problem, and then she
could, if she wished, rewrite the inner loop in machine language
to speed things up and save machine time. As a result we were
able, with about the same amount of effort on our part, to
produce almost 10 times as much as the others were doing. But to
them programming in FORTRAN was not for real programmers !

Physically the management of the IBM 701, at IBM Head-
quarters in NYC where we rented time, was terrible. It was a
sheer waste of machine time (at that time $300 per hour was a
lot) as well as human time. As a result I refused later to order
a big machine until I had figured out how to have a monitor sys-
tem - which someone else finally built for our first IBM 709, and
later modified it for the IBM 7096.

Again, monitors, often called "the system" these days, like
all the earlier steps I have mentioned, should be obvious to
anyone who is involved in wusing the machines from day to day;
but most users seem too busy to think or observe how bad things
are and how much the computer could do to make things sig-
nificantly easier and cheaper. To see the obvious it often takes
an outsider, or else someone like me who is thoughtful and
wonders what he is doing and why it is all necessary. Even when
told, the old timers will persist in the ways they learned, prob-
ably out of pride for their past and an unwillingness to admit
that there are better ways than those they were using for so
long.

One way of describing what happened in the history of
software is that we were going from absolute to virtual machines.
First, we got rid of the actual code instructions, then the ac-
tual addresses, then in FORTRAN the necessity of learning a lot
of the insides of these complicated machines and how they worked.
We were buffering the user from the machine itself. Fairly early
at Bell Telephone Laboratories we built some devices to make the
tape units virtual, machine independent. When, and only when,
you have a totally virtual machine will you have the ability to
transfer software from one machine to another without almost end-
less trouble and errors.

FORTRAN was successful far beyond anyone’s expectations be-
cause of the psychological fact that it was just what its name
implied - formula translation of the things one had always done

4

in school; it did not require learning a new set of ways of
thinking.

Algol, around 1958-60, was backed by many worldwide computer
organizations, including the ACM. It was an attempt by the
theoreticians to greatly improve FORTRAN. But being logicians,
they produced a logical, not a humane, psychological language -
and of course, as you know, it failed in the long run. It was,
among other things, stated in a Boolean logical form which is not
comprehensible to mere mortals (and often not even to the
logicians themselves!). Many other logically designed languages
which were supposed to replace the pedestrian FORTRAN have come
and gone, while FORTRAN (somewhat modified to be sure) remains a
widely used language, indicating clearly the power of psychologi-
cally designed languages over logically designed languages.

This was the beginning of a great hope for special lan-
guages, POL’s they were called, meaning problem griented lan-
guages. There is some merit in this idea, but the great en-
thusiasm faded because too many problems involved more than one
special field, and the languages were usually incompatible. Fur-
thermore, in the long run, they were too costly in the learning
phase for humans to master all of the various ones that they
might need.

In about 1962 LISP language began. Various rumors floated
around as to how actually it came about - the probable truth is
something like this: John McCarthy suggested the elements of the
language for theoretical purposes, the suggestion was taken up
and significantly elaborated others, and when some student ob-
served that he could write a compiler for it in LISP, using the
simple trick of self compiling, all were astounded, including,
apparently, McCarthy himself. But he urged the student to try,
and magically almost overnight they moved from theory to a real
operating LISP compiler!

Let me digress, and discuss my experiences with the IBM 650.
It was a two address drum machine, and operated in fixed decimal
point. I knew from my past experiences in research that floating
point was necessary (von Neumann to the contrary) and I needed
index registers which were not in the machine as delivered. IBM
would some day supply the floating point subroutines, so they
said, but that was not enough for me. I had reviewed for a Jour-
nal the EDSAC book on programming, and there in Appendix D was a
peculiar program written to get a large program into a small
storage. It was an interpreter. But if it was in Appendix D
did they see the importance? I doubt it! Furthermore, in the
second edition it was still in Appendix D apparently R¥ unrecog-
nized by them for what it was.

This raises, as I wished to, the ugly point of when is some-
thing understood? Yes, they wrote one, and used it, but did they
understand the generality of interpreters and compilers? I
believe not. Similarly, when around that time a number of us
realized that computers were actually symbol manipulators and not
just number crunchers, we went around giving talks, and I saw

5

people nod their heads sagely when I said it, but I also realized
that most of them did not understand. Of course you can say
that Turing’s original paper (1937) clearly showed that computers
were symbol manipulating machines, but on carefully rereading the
von Neumann reports you would not guess that the authors did -
though there is one combinatorial program and a sorting routine.

History tends to be charitable in this matter. It gives
credit for understanding what something means when we first &8 do
it. But there is a wise saying that "Almost everyone who opens
up a new field does not really understand it the way the fol-
lowers do". The evidence for this is, unfortunately, all too
good. It has been said that in physics no creator of any sig-
nificant thing ever understood what he had done. I never found
Einstein on the special relativity theory as clear as some later
commentators. And at least one friend of mine has said, behind
my back, "Hamming doesn’t seem to understand error correcting
codes!" He is probably right; I do not understand what I in-
vented as clearly as he does. The reason this happens so often
is that the creators have to fight through so many dark dif-
ficulties, and wade through so much misunderstanding and confu-
sion, that they cannot see the light as others can, now that the
door is open and the path made easy. Please remember, the inven-
tor often has a very limited view of what he invented, and that
some others (you?) can see much more. But also remember this
when you are the author of some brilliant new thing; in time the
same will probably be true of you. It has been said that Newton
was the last of the ancients and not the first of the moderns,
though he was very significant in making our modern world.

Returning to the IBM 650 and me. I started out (1956 or so)
with the following four rules for designing a language:

1. Easy to learn

2. Easy to use

3. Easy to debug (find and correct errors)
4. Easy to use subroutines

The last is something that need not bother you as in those days
we made a distinction between "open" and "closed" subroutines
which is hard to explain now!

You might claim that I was doing top-down programming, but I
immediately wrote out the details of the inner lggp to check that
it could be done efficiently, (bottom-up progrmming) and only
then did I resume my top-down, philosophical approach. Thus,
while I believe in top-down programming as a good approach, I
clearly recognize that also bottom-up programming is at times
needed.

I made the two address, fixed point decimal machine 1loock
like a three address floating point machine - that was my goal -

A op B = C. I used the ten decimal digits of the machine (it was
a decimal machine so far as the user was concerned) in the form

A address Op. B address C address

6

XXX X XXX XXX

How was it done? Easy! I wrote out in my mind the follow-
ing loop, Figure 4-1. First, we needed a current address
register, CAR, and so I assigned one of the 2000 computer
registers of the IBM 650 to do this duty. Then we wrote a
program to do the four steps of the last Lecture. (1) Use the
CAR to find where to go for the next instruction of the program

you wrote (written in my language, of course). (2) Then take the
instruction apart, and store the three addresses, A, B, and C, in
suitable places in the 650 storage. (3) Then add a fixed con-

stant to the operation (Op) of the instruction and go to that
address. There, for each instruction, would be a subroutine that
described the corresponding operation. You might think that I
had, therefore only ten possible operations, but there are only
four three address operations, add, subt, mult, and div, so I
used the 0 instruction to mean "go to the B address and find the
further details of what is wanted". Each subroutine when it was
finished transferred the control to a given place in the loop.
(4) we then added 1 to the contents of the CAR register, cleaned
up some details, and started in again, as does the original
machine in its own internal operation. Of course the transfer
instructions, the 7 instructions as I recall, all put an address
into the CAR and transferred to a place in the loop beyond the
addition of 1 to the contents of the CAR register.

An examination of the process shows that whatever meaning
you want to attach to the instructions must come from the sub-
routines that are written corresponding to the instruction num-
bers. Those subroutines define the meaning of the language. In
this simple case each instruction had its own meaning 1ndependent
of any other instruction, but it is clearly easy to make some in-
structions set switches, flags, or other bits so that some later
instructions on consulting them will be 1nterpreted in one of
several different ways. Thus you see how it is that you can
devise any language you want, provided you can uniquely define it
in some definite manner. It goes on top of the machine’s lan-
guage, maklng the machine into any other machine you want. of
course this is exactly what Turing proved with his Universal
Turing Machine, but as noted above, it was not clearly understood
until we had done it a number of times.

The software system I built was placed in the storage
registers 1000 to 1999. Thus any program in the synthetic lan-
guage, having only 3 decimal digits could only refer to addresses
000 to 999, and could not refer to, and alter, any register in
the software and thus ruin it; designed in security protection of
the software system from the user.

I have gone through this in some detail since we commonly
write a language above the machine language, and may write
several more still higher languages, one on top of the other,
until we get the kind of language we want to use in expressing
our problems to the machine. If you use an interpreter at each
stage, then, of course, it will be somewhat inefficient. The use

7

of a compiler at the top will mean that the highest language is
translated into one of the lower languages once and for all,
though you may still want an interpreter at some level. It also
means, as in the EDSAC case, usually a great compression of
programming effort and storage.

I want to point out again the difference between writing a
logical and a psychological language. Unfortunately, program-
mers, being logically oriented, and rarely humanly oriented, tend
to write and extol logical languages. Perhaps the supreme ex-
ample of this is APL. Logically APL is a great language and to
this day it has its ardent devotees, but it is also not fit for
normal humans to use. In this language there is.a game of "one
liners"; one line of code is given and you are asked what it
means. Even experts in the language have been known to stumble
badly on some of themn.

A change of a single letter in APL can completely alter the
meaning, hence the language has almost no redundancy. But humans
are unreliable and require redundancy; our spoken language tends
to be around 60% redundant, while the written language is around
40%. You probably think that the written and spoken languages
are the same, but you are wrong. To see this difference, try
writing dialog and then read how it sounds. Almost no one can
write dialog so that it sounds right, and when it sounds right it
is still not the spoken language.

The human animal is not reliable, as I keep insisting, so
that low redundancy means lots of undetected errors, while high
redundancy tends to catch the errors. The spoken language goes
over an acoustic channel with all its noise and must caught on
the fly as it is spoken; the written language is printed, and you
can pause, back scan, and do other things to uncover the author’s
meaning. Notice that in English more often different words have
the same sounds ("there" and "their" for example) than words that
have the same spelling but different sounds ("record" as a noun
or a verb, and "tear" as in tear in the eye, vs. tear in a
dress). Thus you should judge a language by how well it fits the
human animal as he is ~ and remember I include how they are
trained in school, or else you must be prepared to do a lot of
training to handle the new type of language you are going to use.
That a language is easy for the computer expert does not mean
that it is necessarily easy for the non-expert, and it is likely
that non-experts will do the bulk of the programming (coding if
you wish) in the near future.

What is wanted in the long run, of course, is that the man
with the problem does the actual writing of the code with no
human interface, as we all too often have these days, between the
person who knows the problem and the person who knows the
programming language. This date is unfortunately too far off to
do much good immediately, but I would think that by the year 2020
it would be fairly universal practice that the expert in the
field of application does the actual program preparation rather
than have experts in computers (and ignorant of the field of
application) do the preparation.

8

Unfortunately, at least in my opinion, the ADA language was
designed by experts, and it shows all the non-humane features
that you can expect from them. It is, in my opinion, a typical
Computer Science hacking job - don’t try to understand what you
are doing, Jjust get it running. As a result of this poor
psychological design, a private survey by me of knowledgeable
people suggests that although a Government contract may specify
that the programming be in ADA, probably over 90% will be done in
FORTRAN, debugged, tested, and then painfully, by hand, be con-
verted to a poor ADA program, with a high probability of errors!

The fundamentals of language are not understood to this day.
Somewhere in the early 50’s I took the then local natural lan-
guage expert (in the public eye) to visit the IBM 701 and then to
lunch, and at desert time I said, "Professor Pei, would you
please discuss with us the engineering efficiencies of lan-
guages." He simply could not grasp the question and kept telling
us how this particular language put the plurals in the middle of
words, how that language had one feature and not another, etc.
What I wanted to know was how the job of communication can be ef-
ficiently accomplished when we have the power to design the lan-
guage, and when only one end of the language is humans, with all
their faults, and the other is a machine with high reliability to
do what it is told to do, but nothing else. I wanted to know
what redundancy I should have for such languages, the density of
irregular and regular verbs, the ratio of synonyms to antonyms,
why we have the number of them that we do, how to compress effi-
ciently the communication channel and still leave usable human
redundancy, etc. As I said, he could not hear the question con-
cerning the engineering eff1c1ency of languages, and I have not
noticed many studies on it since. But until we genuinely under-
stand such things, - assuming, as seems reasonable, that the cur-
rent natural languages through long evolution are reasonably
suited to the job they do for humans - we will not know how to
design artificial languages for human-machine communication.
Hence I expect a lot of trouble until we do understand human com-~
munication via natural languages. Of course, the problem of
human-machine is significantly different from human-human com-
munication, but in which ways and how much seems to be not known
nor even sought for. : '

Until we better understand languages of communication in-
volving humans as they are, (or can be easily trained) then it is
unlikely that many of our software problems will vanish.

Some time ago there was the prominent "fifth generation" of
computers that the Japanese planned to use, along with AI, to get
a better interface between the machine and the human problem sol-
vers. Great claims were made for both the machines and the lan-
guages. The result, so far, is that the machines came out as ad-
vertised, and they are back to the drawing boards on the use of
ATl to aid in programming. It came out as I predicted at that
time (for Los Alamos), since I did not see that the Japanese were
trying to understand the basics of language in the above en-
dineering sense. There are many things we can do to reduce '"the

9

software problem", as it is called, but it will take some basic
understanding of language as it is used to communicate under-
standing between humans, and between humans and machines, before
we will have a really decent solution to this costly problem. It
simply will not go away.

You read constantly about "engineering the production of
software", both for the efficiency of production and for the
reliability of the product. But you do not expect novelists to
"engineer the production of novels". The question arises, "Is
programming closer to novel writing than it is to classical
engineering?" I suggest yes! Given the problem of getting a man
into outer space both the Russians and the Americans did it
pretty much the same way, all things considered, and allowing
some for espionage. They were both bound by the same firm laws
of physics. But give two novelists the problem of writing on "the
greatness and misery of man", and you will probably get two very
different novels (without saying just how to measure this). Give
the same complex problem to two modern programmers and you will,
I claim, get two rather different programs. Hence my belief that
current programming practice is closer to novel writing than it
is to engineering. The novelists are bound only by their im-
aginations, which is somewhat as the programmers are when they
are writing software. Both activities have a large creative com-
ponent, and while you would like to make programming resemble en-
gineering, it will take a lot of time to get there - and maybe
you really, in the long run, do not want to do it! Maybe it just
sounds good. You will have to think about it many times in the
coming years; you might as well start now and discount propaganda
that you hear, as well as all the wishful thinking that goes on
in the area! The software of the utility programs of computers
has been done often enough, and is so limited in scope, so that
it might reasonably be expected to become "engineered", but the
general software preparation is not 1likely to be under
"engineering control" for many, many years.

There are many proposals on how to improve the productivity
of the individual programmer as well as groups of programmers. I
have already mentioned top-down and bottom-up; there are others
such a head programmer, lead programmer, proving that the program
is correct in a mathematical sense, and the waterfall model of
programming to name but a few. While each has some merit I have
faith in only one that is almost never mentioned - think before
you write the program, it might be called. Before you start,
think carefully about the whole thing including what will be your
acceptance test that it is right, as well as how later field
maintenance will be done. Getting it right the first time is
much better than fixing it up later!

One trouble with much of programming is simply that often
there is not a well defined job to be done, rather the program-
ming process itself will gradually discover what the problem is!
The desire that you be given a well defined problem before you
start programming often does not match reality, and hence a lot
of the current proposals to "solve the programming problem" will
fall to the ground if adopted rigorously.

10

i

The use of higher 1level languages has meant a lot of
progress. One estimate of the improvement in 30 years is:

assembler:machine code = 2:1 x2
C language:assembler = 3:1 x6
time share:batch = 1.5:1 X9
UNIX:monitor = 1.5:1 x12
System QA:debugging = 2:1 x24
Prototyping:top down = 1.3:1 x30
ct¥:c = 2:1 X60
Reuse:redo = 1.5:1

x90

so we apparently have made a factor of about 90 in the total
productivity of programmers in 30 years, (a mere 16% rate of
improvement!). This is one person’s guess, and it is at least
plausible. But compared with the speed up of machines it is like
nothing at all! People wish that humans could be similarly
speeded up, but the fundamental bottleneck is the human animal as
it is, and not as we wish it were.

Many studies have shown that progammers differ in produc-
tivity, from worst to best, by much more than a factor of 10.
From this I long ago concluded that the best policy is to pay
your good programmers very well but regularly fire the poorer
ones - if you can get away with it! One way is, of course, to
hire them on contract rather than as regularly employed people,
but that is increasingly against the law which seems to want to
guarantee that even the worst have some employment. In practice
you may actually be better off to pay the worst to stay home and
not get in the way of the more capable (and I am serious)!

Digital computers are now being used extensively to simulate
neural nets and similar devices that are creeping into the con-
puting field. A neural net, in case you are unfamiliar with
them, can learn to get results when you give it a series of in-
puts and acceptable outputs, without ever saying how to produce
the results. They can classify objects into classes that are
reasonable, again without being told what classes are to be used
or found. They learn with simple feedback that uses the informa-
tion that the result computed from an input is not acceptable.
In a way they represent a solution to "the programming problem" -
once they are built they are really not programmed at all, but
still they can solve a wide variety of problems satisfactorily.
They are a coming field which I shall have to skip in this series
of Lectures, but they will probably play a large part in the fu-
ture of computers. In a sense they are a "hard wired" computer
(it may be merely a program) to solve a wide class of problems
when a few parameters are chosen and a lot of data is supplied.

Another view of neural nets is that they represent a fairly
general class of stable feedback systems. You pick the kind and
amount of feedback you think is appropriate, and then the neural
net’s feedback system converges to the desired solution. Again,
it avoids a lot of detailed programming since, at least in a
simulated neural net on a computer, by once writing out a very

11

general piece of program you then have available a broad class of
problems already programmed and the programmer hardly does more
than give a calling sequence.

What other very general pieces of programming can be
similarly done is not now known - you can think about it as one
possible solution to the "programming problem".

In the Lecture on hardware I carefully discussed some of the
limits - the size of molecules, the velocity of light, and the
removal of heat. I should summarize correspondingly the less
firm limits of software.

I made the comparison of writing software with the act of
literary writing; both seem to depend fundamentally on clear
thinking. Can good programming be taught? If we look at the
corresponding teaching of "creative writing" courses we find that
most students of such courses do not become great writers, and
most great writers in the past did not take creative writing
courses! Hence it is dubious that great programmers can be
trained easily.

Does experience help? Do bureaucrats after years of writing
reports and instructions get better? I have no real data but I
suspect that with time they get worse! The habitual use of
"governmentese" over the years probably seeps into their writing
style and makes them worse. I suspect the same for programmers!
Neither years of experience nor the number of languages used is
any reason for thinking that the programmer is getting better
from these expenq;nces. An examination of books on programming
suggests that most of the authors are not good programmers!

The results I picture are not nice, but all you have to op-

pose it is wishful thinking - I have evidence of years and years
of programming on my side!

12

ST7RRrT
Ge.* C'/Q.Z AddreS‘S

G e strocT sy

~- C’/@ew«_/b - ,lt"
. AQ/CZ/C"MJ" .
v &z
/1>_

G T s |

'\ W
- . 4 /

?p-a &j @ = A“"’ c
7" /"
=7

